1. A 99% confidence interval estimate can be interpreted to
mean that

a. if all possible samples are taken and confidence interval
estimates are developed, 99% of them would include the true
population mean somewhere within their interval.

b. we have 99% confidence that we have selected a sample
whose interval does include the population mean.

c. Both of the above.

d. None of the above.

2. Which of the following is not true about the Student's t
distribution?

a. It has more area in the tails and less in the center than
does the normal distribution.

b. It is used to construct confidence intervals for the
population mean when the population standard deviation is known.

c. It is bell shaped and symmetrical.

d. As the number of degrees of freedom increases, the t
distribution approaches the normal distribution.

3. A confidence interval was used to estimate the proportion of
statistics students that are females. A random sample of 72
statistics students generated the following 90% confidence
interval: (0.438, 0.642). Based on the interval above, is the
population proportion of females equal to 0.60?

a. No, and we are 90% sure of it.

b. No. The proportion is 54.17%.

c. Maybe. 0.60 is a believable value of the population
proportion based on the information above.

d. Yes, and we are 90% sure of it.

4. A confidence interval was used to estimate the proportion of
statistics students that are female. A random sample of 72
statistics students generated the following 90% confidence
interval: (0.438, 0.642). Using the information above, what size
sample would be necessary if we wanted to estimate the true
proportion to within 0.08 using 95% confidence?

a. 105

b. 150

c. 420

d. 597

5. When determining the sample size necessary for estimating the
true population mean, which factor is not considered when sampling
with replacement?

a. The population size.

b. The population standard deviation.

c. The level of confidence desired in the estimate.

d. The allowable or tolerable sampling error.

6. An economist is interested in studying the incomes of
consumers in a particular region. The population standard deviation
is known to be $1,000. A random sample of 50 individuals resulted
in an average income of $15,000. What is the upper end point in a
99% confidence interval for the average income?

a. $15,052

b. $15,141

c. $15,330

d. $15,364

7. An economist is interested in studying the incomes of
consumers in a particular region. The population standard deviation
is known to be $1,000. A random sample of 50 individuals resulted
in an average income of $15,000. What sample size would the
economist need to use for a 95% confidence interval if the width of
the interval should not be more than

$100?

a. n = 1537

b. n = 385

c. n = 40

d. n = 20

8. The head librarian at the Library of Congress has asked her
assistant for an interval estimate of the mean number of books
checked out each day. The assistant provides the following interval
estimate: from 740 to 920 books per day. If the head librarian
knows that the population standard deviation is 150 books checked
out per day, and she asked her assistant to use 25 days of data to
construct the interval estimate, what confidence level can she
attach to the interval estimate?

a. 99.7%

b. 99.0%

c. 98.0%

d. 95.4%

9. Which of the following would be an appropriate null
hypothesis?

a. The population proportion is less than 0.65.

b. The sample proportion is less than 0.65.

c. The population proportion is no less than 0.65.

d. The sample proportion is no less than 0.65.

10. If we are performing a two-tailed test of whether = 100, the
probability of detecting a shift of the mean to 105 will be
________ the probability of detecting a shift of the mean to 110.

a. less than

b. greater than

c. equal to

d. not comparable to

11. Which of the following statements is not true about the
level of significance in a hypothesis test?

a. The larger the level of significance, the more likely you are
to reject the null hypothesis.

b. The level of significance is the maximum risk we are
willing to accept in making a Type I error.

c. The significance level is also called the level.

d. The significance level is another name for Type II
error.

12. A _________________ is a numerical quantity computed from
the data of a sample and is used in reaching a decision on whether
or not to reject the null hypothesis.

a. significance level

b. critical value

c. test statistic

d. parameter

TABLE 7-2

A student claims that he can correctly identify whether a
person is a business major or an agriculture major by the way the
person dresses. Suppose in actuality that he can correctly identify
a business major 87% of

the time, while 16% of the time he mistakenly identifies an
agriculture major as a business major. Presented with one person
and asked to identify the major of this person (who is either a
business or agriculture major), he

considers this to be a hypothesis test with the null
hypothesis being that the person is a business major and the
alternative that the person is an agriculture major.

13. Referring to Table 7-2, what would be a Type I error?

a. Saying that the person is a business major when in fact
the person is a business major.

b. Saying that the person is a business major when in fact
the person is an agriculture major.

c. Saying that the person is an agriculture major when in
fact the person is a business major.

d. Saying that the person is an agriculture major when in
fact the person is an agriculture major.

TABLE 7-6

The quality control engineer for a furniture manufacturer is
interested in the mean amount of force necessary to produce cracks
in stressed oak furniture. The mean for unstressed furniture is 650
psi. She performs a two-tailed test of the null hypothesis that the
mean for the stressed oak furniture is 650. The calculated value of
the Z test statistic is a positive number that leads to a p value
of 0.080 for the test.

14. Referring to Table 7-6, suppose the engineer had decided
that the alternative hypothesis to test was that the mean was less
than 650. What would be the p value of this one-tailed test?

a. 0.040

b. 0.160

c. 0.840

d. 0.960

15. The t test for the mean difference between 2 related
populations assumes that the respective

a. sample sizes are equal.

b. sample variances are equal.

c. populations are approximately normal or sample sizes are
large enough.

d. All of the above.

16. In testing for differences between the means of 2 related
populations

the null hypothesis is:

a. H
_{0}:
_{D}= 2.

b. H
_{0}:
_{D}= 0.

c. H
_{0}:
_{D}< 0.

d. H
_{0}:
_{D}> 0.

17. To use the Wilcoxon Rank Sum Test as a test for location, we
must assume that

a. the obtained data are either ranks or numerical
measurements both within and between the 2 samples.

b. both samples are randomly and independently drawn from
their respective populations.

c. both underlying populations from which the samples were
drawn are equivalent in shape and dispersion.

d. All the above.

TABLE 8-4

A real estate company is interested in testing whether, on
average, families in Gotham have been living in their current homes
for less time than families in Metropolis have. A random sample of
100 families from Gotham and

a random sample of 150 families in Metropolis yield the
following data on length of residence in current homes.

Gotham: G = 35 months, sG2 = 900 Metropolis: M = 50 months,
sM2 = 1050

18. Referring to Table 8-4, what is(are) the critical
value(s) of the relevant hypothesis test if the level of
significance is 0.01?

a. t Z = -1.96

b. t Z = 1.96

c. t Z = -2.080

d. t Z = -2.33

19. Referring to Table 8-4, what is the standardized value of
the estimate of the mean of the sampling distribution of the
difference between sample means?

a. -8.75

b. -3.75

c. -2.33

d. -1.96

TABLE 8-5

To test the effects of a business school preparation course,
eight (8) students took a general business test before and after
the course. The results are given below.

Exam Score Exam Score

Student Before Course (1) After Course (2)

1 530 670

2 690 770

3 910 1000

4 700 710

5 450 550

6 820 870

7 820 770

8 630 610

20. Referring to Table 8-5, at the 0.05 level of significance, the decision for this hypothesis test would be:

a. reject the null hypothesis.

b. do not reject the null hypothesis.

c. reject the alternative hypothesis.

d. It cannot be determined from the information given.

### Other samples, services and questions:

When you use PaperHelp, you save one valuable — TIME

You can spend it for more important things than paper writing.